

Leertrac

Data driven Educational Insights GITO Overijse (Belgium) Dr. Marc Rabaey

10th CAF Users' Event under the Polish Presidency of the Council of the EU

10th April 2025, Warsaw

 A secondary school in Flanders, Belgium Governed by the local municipal council, focusing on higher education and regional labor market needs.

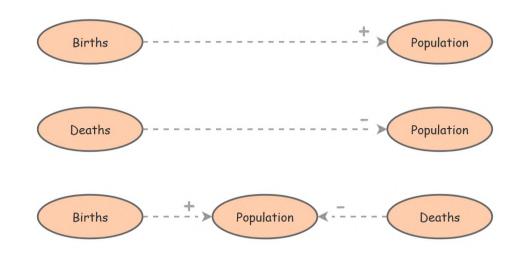
Context

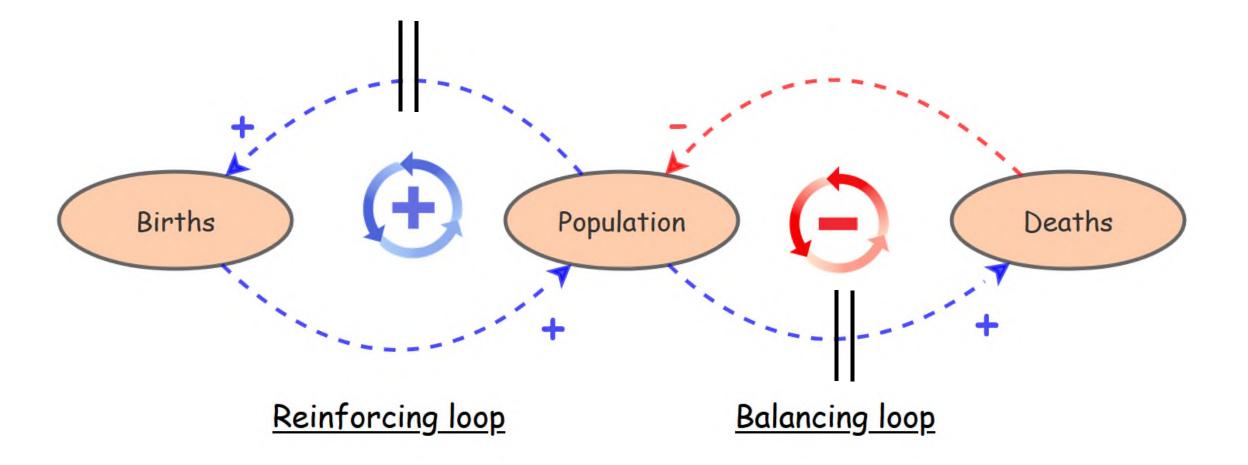
- CAF Alignment
 - Employed the Common Assessment Framework (CAF) for structured selfassessment.
 - Aims to strengthen datadriven decision-making within school governance.

Context

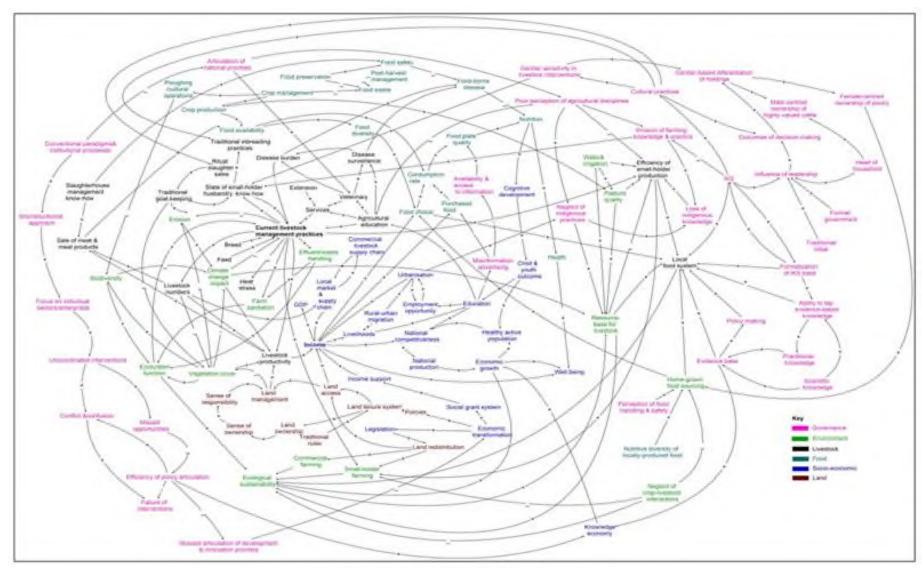
- Key Challenge
 - Underutilized data in Moodle, leading to reliance on end-ofterm grades instead of continuous learning insights.
 - Learning Process and Learning Gain are very important not points (mind shift)

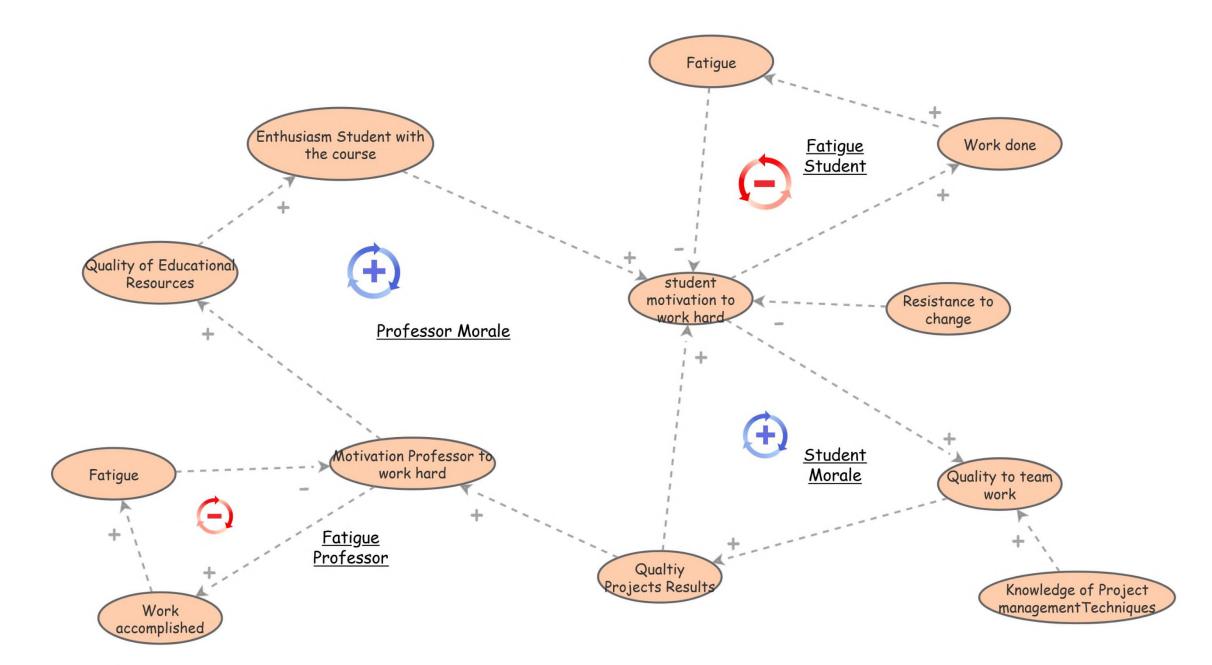
	DER						
chternaam Ale		GHIJKLMNO	PQRSTUVWXYZ				
	C 0 E	FGHIJKLMNO	PQRSTUVWXY				
		Toegepaste wiskunde 2⊙ Periode 1⊙ Periode 2⊙					
		Herfst-Winter	Examen Winter			Lente	
Voornaam / Achternaam 🍝		∑ Herfst-Winter totaal ≑ Ø	🗆 Examen Kerstmis STEM 🛊 🖉	Σ Examen Winter totaal 🛢 🖉	🔬 Periode 1 totaal 🖨 🖉	📮 Taak Nieuwe voorvoegsels 🖨 🖉	Toets Wetenschapp
Loic Abs	10	✓ 37,50 (73,53 %)	✓ 24,00 (55,81 %)	24,00 (55,81 %)	✔ 66,44 (66,44 %)	✔ 18,50 (92,50 %)	¥ 10
Jules Dion		✓ 50,50 (99,02 %)	✓ 43,00 (100,00 %)	43,00 (100,00 %)	✓ 99,41 (99,41 %)	✔ 16,00 (80,00 %)	√ 21,
Mikkel Agos Divina	10	✔ 48,50 (95,10 %)	✓ 38,00 (88,37 %)	38,00 (88,37 %)	✓ 92,41 (92,41 %)	✓ 20,00 (100,00 %)	v 19
F Felix Geleyte		✓ 48,00 (94,12 %)	✓ 40,50 (94,19 %)	40,50 (94,19 %)	✓ 94,15 (94,15 %)	✔ 18,50 (92,50 %)	¥ 16
S Simon Jeandarme		✔ 34,50 (67,65 %)	✓ 30,00 (69,77 %)	30,00 (69,77 %)	✔ 68,50 (68,50 %)	✔ 12,00 (60,00 %)	¥ 1/
S Sebbe Marchand	回0	✓ 44,50 (87,25 %)	✓ 36,00 (83,72 %)	36,00 (83,72 %)	✔ 85,84 (85,84 %)	✓ 17,00 (85,00 %)	¥ 13
E Esther Vanderlinden	100	✓ 33,50 (65,69 %)	✓ 39,00 (90,70 %)	39,00 (90,70 %)	✔ 75,69 (75,69 %)	✔ 14,50 (72,50 %)	✓ 19
-	Bereik	0,00 (0,00 %)-51,00 (100,00 %)	0,00 (0,00 %)-43,00 (100,00 %)	0,00 (0,00 %)-43,00 (100,00 %)	0,00 (0,00 %)-100,00 (100,00 %)	0,00 (0,00 %)-20,00 (100,00 %)	0,00 (0,00 %)-21,
	Algemeen gemiddelde		83.22 %	83.22 %	83.21%	83.21 %	


?


- Initial Observations
 - Final grades dominated deliberations; limited use of learning analytics for early intervention.
 - Existing LMS (Moodle) stored vast student activity data but was rarely accessed systematically.
- Motivation for Leertrac
 - Enhance student support via real-time analytics and reduce isolated, publisherdriven systems.
 - Promote teacher autonomy and open-source educational resources.
- Systems Thinking Approach
 - Integration of Causal Loop Diagrams (CLDs) to visualize feedback loops influencing student motivation, engagement, and performance.

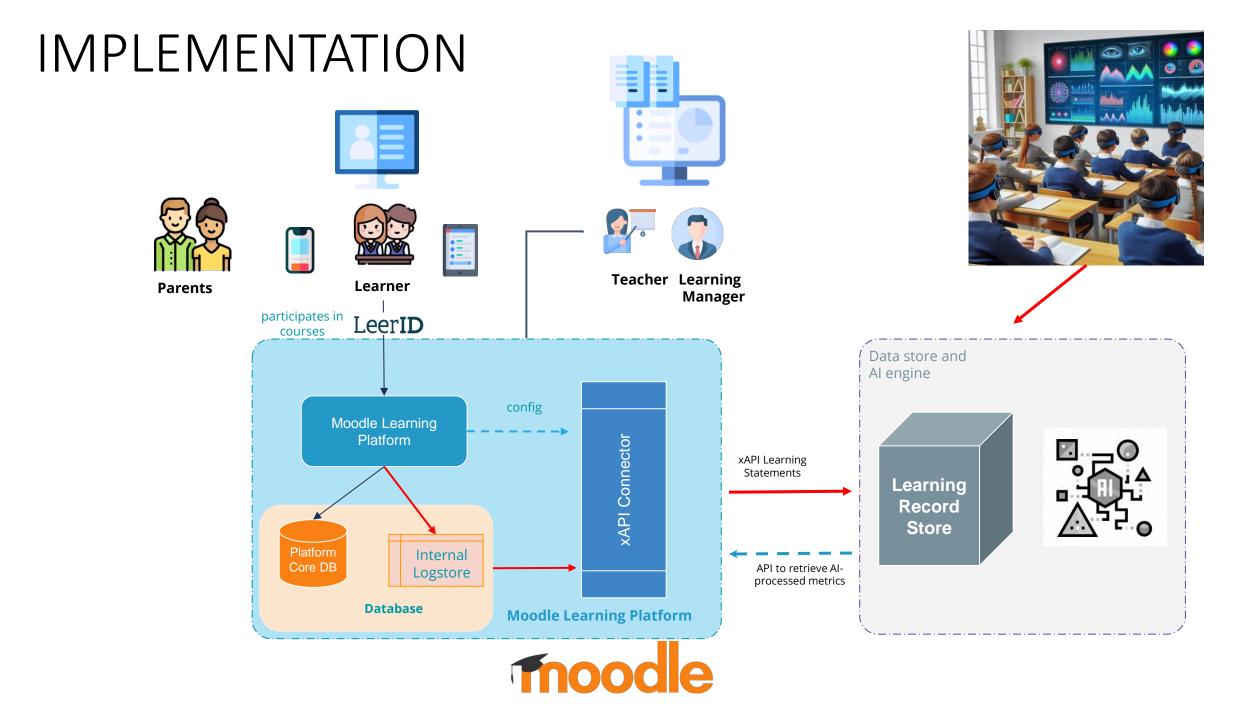
What is a Causal Loop Diagram?


• A causal loop diagram (CLD) is a visual tool used in systems thinking to illustrate the feedback **loops** between different variables in a system. Each arrow in a CLD indicates how one variable influences another, highlighting whether the effect is **reinforcing** (moving in the same direction) or **balancing** (moving in the opposite direction).


What is a Causal Loop Diagram?

Livestock-derived food system in South Africa

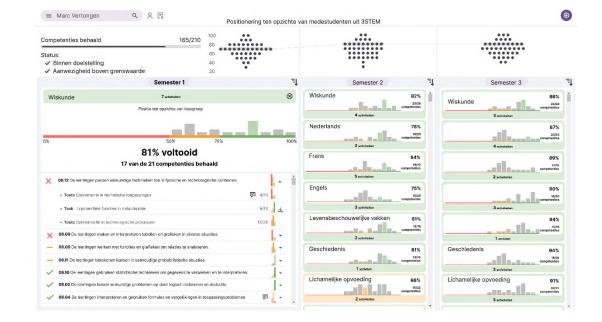
https://europepmc.org/article/MED/32879750



https://www.researchgate.net/figure/Causal-Loop-Diagram-shows-the-main-feedback-loops_fig1_321106328

- **Observation & Data Gathering**: Collect qualitative or quantitative information about the system.
- Team Brainstorm: Involve multiple stakeholders (teachers, administrators, students, etc.) to capture different viewpoints.
- **Drafting the Diagram**: Sketch the variables and arrows on a whiteboard or paper; mark the polarity of each link.
- Validation: Discuss the draft with the team, ensuring it accurately represents real-world relationships.
- Iteration: Refine and simplify. Add or remove variables as new insights emerge.
- Use in Decision-Making: Identify loops that are critical to success or risk. Develop strategies to reinforce positive loops or break negative cycles.

https://www.researchgate.net/figure/Causal-Loop-Diagram-shows-the-main-feedback-loops_fig1_321106328


Process/Dynamics (1/2)

- Planning & Needs Assessment
 - Conducted CAF selfevaluation to identify data gaps and clarify objectives.
 - Engaged teachers, administrators, and external experts in workshops.

Process/Dynamics (1/2)

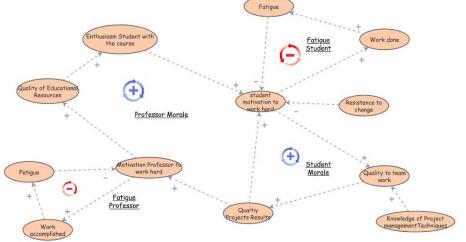
- Defining Objectives & Mobilizing Resources
 - Developed interactive dashboards for competency tracking, engagement metrics, and bottlenecks/alerts.
 - Collaborated with GO! CVO Antwerpen, KU Leuven (Augment – Computer Sciences), and Eummena vzw for technical assistance.

- Defining Objectives & Mobilizing Resources
 - Developed interactive dashboards for competency tracking, engagement metrics, and bottlenecks/alerts.
 - Collaborated with GO! CVO Antwerpen, KU Leuven (Augment Computer Sciences), and Eummena vzw for technical assistance.
- Dashboard Development & CLD Integration
 - Built three Moodle-integrated dashboards connected to a Learning Record Store (LRS).
 - Used CLDs to understand systemic relationships (e.g., engagement → performance → motivation).

- PHASE 1: PILOT TESTING & FEEDBACK (cycles)
 - Small-scale pilot -> Feedback via surveys /focus groups.
 - Refined dashboard design & teacher training.

- PHASE 2: FULL IMPLEMENTATION & TRAINING
 - Rolling out system school-wide (hands-on workshops)
 - Ensuring GDPR compliance & access policies

- Improved Teacher Adoption
 - It is assumed that over 80% of teachers will regularly consult the dashboards for performance monitoring.
 - Shift from final-grade focus to continuous, data-informed evaluations.
- Early Intervention & Student Support
 - 30% increase in proactive interventions (extra tutoring, personalized learning plans).
 - Alerts flag students at risk based on declining engagement or repeated low scores.
- Reduced Data Retrieval Time
 - Dashboards provide real-time insights, cutting data collection time by ~60%.
 - More time allocated to pedagogy and mentoring instead of manual data gathering


- Holistic Decision-Making
 - Integration of formative assessments, engagement metrics, and CLDs in deliberations.
 - More nuanced understanding of student progress beyond summative grades.
- Teacher-Created Digital Content
 - 15% rise in teacher-authored course materials on Moodle (two years)
 - Movement away from publisher-driven textbooks toward open-source and AI-supported resources.
- Future Outlook
 - Annual review cycle for continual dashboard improvements.
 - Plans to integrate with the Student Information System (SIS) for even richer data profiles.

- Embrace CAF Self-Assessment
 - A structured review of existing practices (e.g., data use, teacher involvement) is crucial before implementing technological changes.
- Foster Stakeholder Engagement
 - Involve teachers, students, and external partners from the planning stage.
 - Encourage co-creation for greater buy-in and smoother adoption.
- Invest in Data Literacy & Ongoing Training
 - Transitioning to data-driven methods requires continuous professional development.
 - Clarify that analytics are aids, not absolute determinants of student performance.

- Adopt Systems Thinking
 - Causal Loop Diagrams reveal underlying feedback loops, guiding more holistic interventions (Complex Adaptive Systems).

- Champion Open-Source & Collaboration
 - Leverage platforms like Moodle for adaptability and cost-effectiveness.
 - Share solutions and learn from other schools/organizations pursuing data-driven strategies.

- Project Manager/Contact Person:
 - Name : Marc Rabaey
 - Email : directie@gito-overijse.be
 - School : GITO Overijse, Belgium
- CAF Support
 - Name : Ingeborg Maes
 - Email : ingeborg@insightful.be
 - Company: Insightful, Belgium

Thank you!